Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 17: 1212097, 2023.
Article in English | MEDLINE | ID: mdl-37416506

ABSTRACT

Introduction: Glass coverslips are used as a substrate since Harrison's initial nerve cell culture experiments in 1910. In 1974, the first study of brain cells seeded onto polylysine (PL) coated substrate was published. Usually, neurons adhere quickly to PL coating. However, maintaining cortical neurons in culture on PL coating for a prolonged time is challenging. Methods: A collaborative study between chemical engineers and neurobiologists was conducted to find a simple method to enhance neuronal maturation on poly-D-lysine (PDL). In this work, a simple protocol to coat PDL efficiently on coverslips is presented, characterized, and compared to a conventional adsorption method. We studied the adhesion and maturation of primary cortical neurons with various morphological and functional approaches, including phase contrast microscopy, immunocytochemistry, scanning electron microscopy, patch clamp recordings, and calcium imaging. Results: We observed that several parameters of neuronal maturation are influenced by the substrate: neurons develop more dense and extended networks and synaptic activity is enhanced, when seeded on covalently bound PDL compared to adsorbed PDL. Discussion: Hence, we established reproducible and optimal conditions enhancing maturation of primary cortical neurons in vitro. Our method allows higher reliability and yield of results and could also be profitable for laboratories using PL with other cell types.

2.
Cells ; 10(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34208876

ABSTRACT

During the development of the retina and the nervous system, high levels of energy are required by the axons of retinal ganglion cells (RGCs) to grow towards their brain targets. This energy demand leads to an increase of glycolysis and L-lactate concentrations in the retina. L-lactate is known to be the endogenous ligand of the GPR81 receptor. However, the role of L-lactate and its receptor in the development of the nervous system has not been studied in depth. In the present study, we used immunohistochemistry to show that GPR81 is localized in different retinal layers during development, but is predominantly expressed in the RGC of the adult rodent. Treatment of retinal explants with L-lactate or the exogenous GPR81 agonist 3,5-DHBA altered RGC growth cone (GC) morphology (increasing in size and number of filopodia) and promoted RGC axon growth. These GPR81-mediated modifications of GC morphology and axon growth were mediated by protein kinases A and C, but were absent in explants from gpr81-/- transgenic mice. Living gpr81-/- mice showed a decrease in ipsilateral projections of RGCs to the dorsal lateral geniculate nucleus (dLGN). In conclusion, present results suggest that L-lactate and its receptor GPR81 play an important role in the development of the visual nervous system.


Subject(s)
Lactates/metabolism , Nervous System/embryology , Receptors, G-Protein-Coupled/metabolism , Vision, Ocular/physiology , Animals , Axons/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Growth Cones/metabolism , Mice, Inbred C57BL , Phosphorylation , Protein Kinase C/metabolism , Retina/metabolism , Thalamus/metabolism
3.
Dev Neurobiol ; 76(6): 642-60, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26408263

ABSTRACT

We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well-known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP-positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP-positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish.


Subject(s)
Neurons/metabolism , Spinal Cord/cytology , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , ELAV-Like Protein 3/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Microscopy, Confocal , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish , Zebrafish Proteins/genetics
4.
Prog Brain Res ; 188: 3-14, 2011.
Article in English | MEDLINE | ID: mdl-21333799

ABSTRACT

GABA and glycine are classically called "inhibitory" amino acids, despite the fact that their action can rapidly switch from inhibition to excitation and vice versa. The postsynaptic action depends on the intracellular concentration of chloride ions ([Cl(-)](i)), which is regulated by proteins in the plasma membrane: the K(+)-Cl(-) cotransporter KCC2 and the Na(+)-K(+)-Cl(-) cotransporter NKCC1, which extrude and intrude Cl(-) ions, respectively. A high [Cl(-)](i) leads to a depolarizing (excitatory) action of GABA and glycine, as observed in mature dorsal root ganglion neurons and in motoneurons both early during development and in several pathological conditions, such as following spinal cord injury. Here, we review some recent data regarding chloride homeostasis in the spinal cord and its contribution to network operation involved in locomotion.


Subject(s)
Chlorides/metabolism , Homeostasis/physiology , Locomotion/physiology , Nerve Net/physiology , Periodicity , Animals , Ganglia, Spinal/cytology , Glycine/metabolism , Membrane Potentials/physiology , Neurons/cytology , Neurons/metabolism , Spinal Cord/cytology , Spinal Cord/metabolism , Spinal Cord Injuries/physiopathology , gamma-Aminobutyric Acid/metabolism
5.
Eur J Neurosci ; 33(7): 1212-22, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21255132

ABSTRACT

Spontaneous activity is observed in most developing neuronal circuits, such as the retina, hippocampus, brainstem and spinal cord. In the spinal cord, spontaneous activity is important for generating embryonic movements critical for the proper development of motor axons, muscles and synaptic connections. A spontaneous bursting activity can be recorded in vitro from ventral roots during perinatal development. The depolarizing action of the inhibitory amino acids γ-aminobutyric acid and glycine is widely proposed to contribute to spontaneous activity in several immature systems. During development, the intracellular chloride concentration decreases, leading to a shift of equilibrium potential for Cl(-) ions towards more negative values, and thereby to a change in glycine- and γ-aminobutyric acid-evoked potentials from depolarization/excitation to hyperpolarization/inhibition. The up-regulation of the outward-directed Cl(-) pump, the neuron-specific potassium-chloride co-transporter type 2 KCC2, has been shown to underlie this shift. Here, we investigated whether spontaneous and locomotor-like activities are altered in genetically modified mice that express only 8-20% of KCC2, compared with wild-type animals. We show that a reduced amount of KCC2 leads to a depolarized equilibrium potential for Cl(-) ions in lumbar motoneurons, an increased spontaneous activity and a faster locomotor-like activity. However, the left-right and flexor-extensor alternating pattern observed during fictive locomotion was not affected. We conclude that neuronal networks within the spinal cord are more excitable in KCC2 mutant mice, which suggests that KCC2 strongly modulates the excitability of spinal cord networks.


Subject(s)
Motor Neurons/physiology , Nerve Net/physiology , Spinal Cord/anatomy & histology , Spinal Cord/physiology , Symporters/metabolism , Animals , Bumetanide/pharmacology , Furosemide/pharmacology , Lumbar Vertebrae , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Motor Activity/physiology , Motor Neurons/cytology , Motor Neurons/drug effects , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Symporters/genetics , K Cl- Cotransporters
6.
Nat Med ; 16(3): 302-7, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20190766

ABSTRACT

Hyperexcitability of spinal reflexes and reduced synaptic inhibition are commonly associated with spasticity after spinal cord injury (SCI). In adults, the activation of gamma-aminobutyric acid(A) (GABAA) and glycine receptors inhibits neurons as a result of low intracellular chloride (Cl-) concentration, which is maintained by the potassium-chloride cotransporter KCC2 (encoded by Slc12a5). We show that KCC2 is downregulated after SCI in rats, particularly in motoneuron membranes, thereby depolarizing the Cl- equilibrium potential and reducing the strength of postsynaptic inhibition. Blocking KCC2 in intact rats reduces the rate-dependent depression (RDD) of the Hoffmann reflex, as is observed in spasticity. RDD is also decreased in KCC2-deficient mice and in intact rats after intrathecal brain-derived neurotrophic factor (BDNF) injection, which downregulates KCC2. The early decrease in KCC2 after SCI is prevented by sequestering BDNF at the time of SCI. Conversely, after SCI, BDNF upregulates KCC2 and restores RDD. Our results open new perspectives for the development of therapeutic strategies to alleviate spasticity.


Subject(s)
Muscle Spasticity/physiopathology , Spinal Cord Injuries/physiopathology , Symporters/physiology , Animals , Blotting, Western , Brain-Derived Neurotrophic Factor/pharmacology , Carboxylic Acids/pharmacology , Chloride Channels/drug effects , Chloride Channels/physiology , Down-Regulation/physiology , Female , Gene Expression Regulation , Glycine/physiology , Indenes/pharmacology , Injections, Spinal , Male , Membrane Potentials/physiology , Mice , Mice, Transgenic , Motor Neurons/physiology , Rats , Reflex, Abnormal/drug effects , Reflex, Abnormal/physiology , Spinal Cord/physiopathology , Symporters/antagonists & inhibitors , Symporters/biosynthesis , gamma-Aminobutyric Acid/physiology , K Cl- Cotransporters
SELECTION OF CITATIONS
SEARCH DETAIL
...